Răspuns :
1(a+b)+2(a+b)+....+100(a+b)= 10+2*10+3*10+....+100*10= 10*(1+2+3+...+100)= 10* 100*101/2 = 500*101=50500
10+2*10+3*10+...+100*10=
=10x(1+2+...+100)=10x[(100x101)/2]=10x5050=50500
Am folosit: 1+2+...+n=n(n+1)/2
=10x(1+2+...+100)=10x[(100x101)/2]=10x5050=50500
Am folosit: 1+2+...+n=n(n+1)/2
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!