[tex]1.3\sqrt{12\sqrt{2x}}=6\sqrt6|:3\\
\sqrt{12\sqrt{2x}}=2\sqrt6 |()^2\\
12\sqrt{2x}=24 |:12\\
\sqrt{2x}=2 |()^2\\
2x=4\Rightarrow \bold{x=2}[/tex]
[tex]2.\sqrt{(x-\sqrt{384})^2}+\sqrt{(y-\sqrt{150})^2}+\sqrt{(z-\sqrt{54})^2}\leq 0\\
|x-\sqrt{384}|+|y-\sqrt{150}|+|z-\sqrt{54}|\leq 0\\
Dar:|x-\sqrt{384}|+|y-\sqrt{150}|+|z-\sqrt{54}|\geq0,ceea\ ce\ implica\ faptul\\
ca: \{x-\sqrt{384}=0\Rightarrow x=\sqrt{384}=8\sqrt{6}\\
~~~~~~\{y-\sqrt{150}=0\Rightarrow y=\sqrt{150}=5\sqrt{6}\\
~~~~~~\{z-\sqrt{54}=0\Rightarrow z=\sqrt{54}=3\sqrt{6}\\
Asadar:x+y+z=16\sqrt{6}[/tex]