a)
P=AM+MB+AB
ADM=tr. dreptunghic, aplicam Pitagora, AM^2=AD^2 +DM^2=16+1=17
AM=V17 cm, "V"=radical
BMC=tr. dreptunghic, aplicam Pitagora,MB^2 =BC^2 +MC^2=9+16=25
MB=5cm
P=4+5+V17=9+V17 cm
13,1<9+V17<13,2 scadem 9
4,1<V17<4,2 ridicam la patrat
16,81<17<17,64 adevarat
b)
A(ABM)=[A(ABCD)]/2=(4x4)/2=8 cm^2
c)
Fie A' apartinand lui MB, astfel incat AA'_l_MB.
A(AMB)=8 cm^2
A(AMB)=(AA'xMB)/2=(5xAA')/2
8=(5xAA')/2
AA'=16/5=3,2 cm