👤

arătati că n =200+2×(1+2+3+...+199)este pătrat perfect. Arătati că 3 la puterea 2004+3 la putetea 2007 nu este pătrat perfect .

Răspuns :

Suma 1+2+3+...+199 se poate calcula cu formula lui Gauss si este egală cu (1+199)*199/2 .ne întoarcem sus și avem 200+2*200*199/2 .2 cu 2 se simplifică si o sa avem 200+200*199 => 200*200=200^2 deci este pătrat perfect .
3^2004+3^2007=3^2004(1+3^3) =3^2004*28
Acum ne interesează ultima cifră a produsului pentru că am observat că un pătrat perfect se termina in cifrele 0,1,3,4,5,7,9 etc de ex 3^1=3, 3^2=9 ,3^3=27 etc.
Deci 3^2004*28=(3^1002)^2*28 .
Observăm că (3^1002)^2 se termina in cifră 9 iar 28 în 8 deci ultima cifră a produsului se calculează ca 9*8=72 iar ultima cifră fiind 2 înseamnă că suma respectiva nu este un pătrat perfect