👤

Cos la puterea 2 de x=0.75

Răspuns :

cos²x=0,75  ⇒ cos²x=3/4 ⇒ cosx=(√3)/2, si cosx=-(√3)/2, deci x=+si-π/6+2kπ; 
x=+ si-(5π/6)+2kπ, k∈N. Deci :
x∈{-5π/6+2kπ| k∈Z}∪{-π/6+2kπ|k∈Z}∪{π/6+2kπ|k∈Z}∪{5π/6+2kπ|k∈Z}
Salut,

Uite o altă abordare:

cos²x = (1 + cos(2x)) / 2 = 3/4, sau 1/2 + cos(2x)/2 = 3/4, deci cos(2x)/2 = 1/4, sau cos2x = 1/2. De aici:

2x = ±arccos(1/2) + 2kπ, sau 2x = ±π/3 + 2kπ, deci x = ±π/6 + kπ.

x = {-π/6 + kπ} U {π/6 + kπ}.

Simplu, nu ?

Green eyes.