[tex]\displaystyle \mathtt{7+11+15+...+999} \\ \\ \mathtt{999=7+(n-1) \cdot 4 \Rightarrow 999=7+4n-4 \Rightarrow 4n=996 \Rightarrow n=249} \\ \\ \mathtt{S_{249}= \frac{2 \cdot 7+(249-1) \cdot 4}{2}\cdot 249 }\\ \\ \mathtt{S_{249}= \frac{14+248 \cdot 4}{2}\cdot 249 }\\ \\ \mathtt{S_{249}= \frac{14+992}{2} \cdot 249}\\ \\ \mathtt{S_{249}= \frac{1006}{2} \cdot 249}\\ \\ \mathtt{S_{249}=503 \cdot 249}\\ \\ \mathbf{S_{249}=125247}[/tex]