👤

Sa se afle suma primilor 2011 termeni ai unei progresii aritmetica (an) , stiind ca a1000+a1004+a1008+a1012=212.

Răspuns :

[tex]\displaystyle a_{1000}+a_{1004}+a_{1008}+a_{1012}=212\\ a_1+999r+a_1+1003r+a_1+1007r+a_1+1011r=212\\ 4a_1+4020r=212|:4\\ a_1+1005r=53\\ S_{2011}= \frac{(a_1+a_{2011})\cdot2011}{2} =\\ = \frac{(a_1+a_1+2010r)\cdot2011}{2}=\\ = \frac{2(a_1+1005r)\cdot 2011}{2} =\\ =(a_1+1005r)\cdot 2011=53\cdot 2011=106583[/tex]