numerele pot fii: ni=10,11,12,...,99.Atunci
n1=10²+10³=10²*11≠patrat perfect(pp)
n2=11²+11³=11²(1+11)=11²*12≠pp
........................................................................
nk=k²+k³=k²(k+1) Pt ca nk=pp atunci k+1 este pp pt ca k² este pp
Deci k+1={16,25,36,49,64,81,100}=>
k={15,24,35,48,63,80,99]
∑nk=15+24+...+99=364=13*28 evident divizibil cu 13