👤

Aflati m € R asa incat x^2 - (m + 2)x + m + 2 > 0 . Multumesc mult!

Răspuns :

Salut,

În acest caz, coeficientul lui x² este egal cu 1, deci graficul funcției din enunț este o parabolă cu "brațele" orientate în sus.

Pentru ca funcția din enunț să nu ia valori negative, trebuie ca ecuația f(x) = 0, adică x² -- (m + 2)x + m + 2 = 0 să NU aibă soluții, deci nu există puncte de intersecție între graficul funcției (parabola amintită mai sus) și axa orizontală OX.

Condiția este: Δ = b² -- 4ac > 0, sau [--(m + 2)]² - 4·1·(m + 2) > 0, sau
m² + 4m + 4 -- 4m -- 8 > 0, sau m² -- 4 > 0.

Ecuația m² -- 4 = 0, are soluțiile m₁ = --2 și m₂ = 2.

Funcția g(m) = m² -- 4 are semnul lui "a" (coeficientul lui m²), adică semn pozitiv în afara rădăcinilor, deci m ∈ (--∞, --2) U (2, +∞).

A fost greu ? :-).

Green eyes.