Răspuns :
[tex]\it f(x) = x\log_2x \\\;\\ f' (x) = (x\log_2x)' = x'\log_2x + x (\log_2x)' =1\cdot\log_2x +x\cdot\dfrac{1}{x}\cdot \dfrac{1}{ \ln2} = \\\;\\ \\\;\\ = \log_2x + \dfrac{1}{\ln2} = \dfrac{ \ln x}{ \ln2} +\dfrac{1}{\ln 2} = \dfrac{\ln x +1}{\ln2} = \dfrac{1+\ln x}{\ln2}[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!