👤

Rezolvați derivata funcției f(x)=x log2X

Răspuns :

(x * logaritm in baza 2 dinx)'= vezi atasament
Vezi imaginea ALBATRAN


[tex]\it f(x) = x\log_2x \\\;\\ f' (x) = (x\log_2x)' = x'\log_2x + x (\log_2x)' =1\cdot\log_2x +x\cdot\dfrac{1}{x}\cdot \dfrac{1}{ \ln2} = \\\;\\ \\\;\\ = \log_2x + \dfrac{1}{\ln2} = \dfrac{ \ln x}{ \ln2} +\dfrac{1}{\ln 2} = \dfrac{\ln x +1}{\ln2} = \dfrac{1+\ln x}{\ln2}[/tex]