[tex]4R^2=G^2+G^2-2*G*G*cos120 \\ 2R^2=-2G^2*(- \frac{1}{2}) \\ 2R^2=G^2 \\ R= \frac{G \sqrt{2} }{2} \\ \frac{ A_{T} }{ A_{L} } = \frac{ \pi R^2+ \pi RG}{ \pi RG}= \frac{ \pi R(R+G)}{ \pi RG}= \frac{R+G}{G}= \frac{ \frac{G \sqrt{2} }{2}+G }{G}= \frac{G( \sqrt{2}+2) }{2G}= \frac{ \sqrt{2}+2 }{ \sqrt{2} } [/tex]
=[tex]=1+ \sqrt{2} [/tex]