Diagonalele rombului se intersecteaza in mijlocul acestora, formand 4 triunghiuri dreptunghice.
Fie O punctul de intersectie al diagonalelor
BO=BD:2=36:2=18 cm
OC=AC:2=36rad3:2=18rad3 cm
Luam triunghiul dreptunghic BOC, cu masura unghiului O de 90 grade si aplicam teorema lui Pitagora ca sa aflam ipotenuza:
"^" -la putere
BC^2=BO^2+OC^2
BC^2=18^2+(18rad3)^2=324+ 972=1296
BC=36 cm
Laturile unui romb sunt egale:
P=4×BC=4×36=144 cm perimetrul