👤

[tex]$ $ \fbox{AM 96} Sa se determine multimea tuturor numerelor reale x care \\ verifica inegalitatea: \\ \\ e^x-1-x- \frac{x^2}{2!}- \frac{x^3}{3!} - \frac{x^4}{4!} \geq 0 \\ \\ a)$ $ (0, \infty) \quad\quad \quad $ \ b) (-\infty, 0) \quad\quad\quad $ \ c) [0, \infty) \quad\quad\quad $d) $ $\mathbb_{R}\quad\quad\quad $ f) $\emptyset$[/tex]

Cum se rezolva? Ajutati-ma va rog.