Răspuns :
Salut,
Numărul de cazuri posibile este numărul de submulțimi ale mulțimii A, care mulțime A are 6 elemente, deci mulțimea A are 2⁶ = 64 de submulțimi.
Îți reamintesc că la o submulțime elementele se scriu o singură dată și se scriu în ordine crescătoare, dacă avem cel puțin 2 elemente.
Submulțimile cu cel mult 3 elemente pot avea un element, SAU două elemente, SAU 3 elemente.
Acest SAU la matematică se traduce prin ADUNARE.
Numărul de submulțimi de un element este combinări de 6 (numărul de elemente ale mulțimii A) luate câte 1.
Numărul de submulțimi de 2 elemente este combinări de 6 luate câte 2.
Numărul de submulțimi de 3 elemente este combinări de 6 luate câte 3.
Numărul de cazuri favorabile este deci:
[tex]C_6^1+C_6^2+C_6^3=6+15+20=41.[/tex]
Deci probabilitatea este 41/64.
Simplu, nu ? :-))).
Green eyes.
Numărul de cazuri posibile este numărul de submulțimi ale mulțimii A, care mulțime A are 6 elemente, deci mulțimea A are 2⁶ = 64 de submulțimi.
Îți reamintesc că la o submulțime elementele se scriu o singură dată și se scriu în ordine crescătoare, dacă avem cel puțin 2 elemente.
Submulțimile cu cel mult 3 elemente pot avea un element, SAU două elemente, SAU 3 elemente.
Acest SAU la matematică se traduce prin ADUNARE.
Numărul de submulțimi de un element este combinări de 6 (numărul de elemente ale mulțimii A) luate câte 1.
Numărul de submulțimi de 2 elemente este combinări de 6 luate câte 2.
Numărul de submulțimi de 3 elemente este combinări de 6 luate câte 3.
Numărul de cazuri favorabile este deci:
[tex]C_6^1+C_6^2+C_6^3=6+15+20=41.[/tex]
Deci probabilitatea este 41/64.
Simplu, nu ? :-))).
Green eyes.
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!