Răspuns :
[tex]\displaystyle \mathtt{ \left\{\begin{array}{ccc}\mathtt{3x+y+z=1}\\\mathtt{x+3y+z=2}\\\mathtt{x+y+3z=2}\end{array}\right }\\ \\ \mathtt{\Delta= \left|\begin{array}{ccc}\mathtt3&\mathtt1&\mathtt1\\\mathtt1&\mathtt3&\mathtt1\\\mathtt1&\mathtt1&\mathtt3\end{array}\right| =3 \cdot 3 \cdot 3+1 \cdot 1 \cdot 1+1 \cdot 1 \cdot 1-1 \cdot 3 \cdot 1-1 \cdot 1 \cdot 3-}\\ \\ \mathtt{-3 \cdot 1 \cdot 1=27+1+1-3-3-3=20}\\ \\ \mathtt{\Delta=20 \not = 0}[/tex]
[tex]\displaystyle \mathtt{\Delta_x=\left|\begin{array}{ccc}\mathtt1&\mathtt1&\mathtt1\\\mathtt2&\mathtt3&\mathtt1\\\mathtt2&\mathtt1&\mathtt3\end{array}\right|=1 \cdot 3 \cdot 3+1 \cdot 2 \cdot 1+1 \cdot 1 \cdot 2-1 \cdot 3 \cdot 2-1 \cdot 2 \cdot 3- } \\ \\ \mathtt{-1 \cdot 1 \cdot 1=9+2+2-6-6-1=0}\\ \\ \mathtt{\Delta_x=0}[/tex]
[tex]\displaystyle \mathtt{\Delta_y=\left|\begin{array}{ccc}\mathtt3&\mathtt1&\mathtt1\\\mathtt1&\mathtt2&\mathtt1\\\mathtt1&\mathtt2&\mathtt3\end{array}\right| =3 \cdot 2 \cdot 3+1 \cdot 1 \cdot 2+1 \cdot 1 \cdot 1-1 \cdot 2 \cdot 1-1 \cdot 1 \cdot 3-}\\ \\ \mathtt{-3 \cdot 1 \cdot 2=18+2+1-2-3-6=10}\\ \\ \mathtt{\Delta_y=10}[/tex]
[tex]\displaystyle \mathtt{\Delta_z=\left|\begin{array}{ccc}\mathtt3&\mathtt1&\mathtt1\\\mathtt1&\mathtt3&\mathtt2\\\mathtt1&\mathtt1&\mathtt2\end{array}\right|=3 \cdot 3 \cdot 2+1 \cdot 1 \cdot 1+1\cdot 2 \cdot 1-1 \cdot 3 \cdot 1-1 \cdot 1 \cdot 2-}\\ \\ \mathtt{-3 \cdot 2 \cdot 1=18+1+2-3-2-6=10}\\ \\ \mathtt{\Delta_z=10}[/tex]
[tex]\displaystyle \mathtt{x= \frac{\Delta_x}{\Delta} = \frac{0}{20} =0}\\ \\ \mathtt{y= \frac{\Delta_y}{\Delta}= \frac{10}{20} = \frac{1}{2} }\\ \\ \mathtt{z= \frac{\Delta_z}{\Delta} = \frac{10}{20} = \frac{1}{2} }\\ \\ \mathtt{x=0;~y= \frac{1}{2} ;~z= \frac{1}{2} }[/tex]
[tex]\displaystyle \mathtt{\Delta_x=\left|\begin{array}{ccc}\mathtt1&\mathtt1&\mathtt1\\\mathtt2&\mathtt3&\mathtt1\\\mathtt2&\mathtt1&\mathtt3\end{array}\right|=1 \cdot 3 \cdot 3+1 \cdot 2 \cdot 1+1 \cdot 1 \cdot 2-1 \cdot 3 \cdot 2-1 \cdot 2 \cdot 3- } \\ \\ \mathtt{-1 \cdot 1 \cdot 1=9+2+2-6-6-1=0}\\ \\ \mathtt{\Delta_x=0}[/tex]
[tex]\displaystyle \mathtt{\Delta_y=\left|\begin{array}{ccc}\mathtt3&\mathtt1&\mathtt1\\\mathtt1&\mathtt2&\mathtt1\\\mathtt1&\mathtt2&\mathtt3\end{array}\right| =3 \cdot 2 \cdot 3+1 \cdot 1 \cdot 2+1 \cdot 1 \cdot 1-1 \cdot 2 \cdot 1-1 \cdot 1 \cdot 3-}\\ \\ \mathtt{-3 \cdot 1 \cdot 2=18+2+1-2-3-6=10}\\ \\ \mathtt{\Delta_y=10}[/tex]
[tex]\displaystyle \mathtt{\Delta_z=\left|\begin{array}{ccc}\mathtt3&\mathtt1&\mathtt1\\\mathtt1&\mathtt3&\mathtt2\\\mathtt1&\mathtt1&\mathtt2\end{array}\right|=3 \cdot 3 \cdot 2+1 \cdot 1 \cdot 1+1\cdot 2 \cdot 1-1 \cdot 3 \cdot 1-1 \cdot 1 \cdot 2-}\\ \\ \mathtt{-3 \cdot 2 \cdot 1=18+1+2-3-2-6=10}\\ \\ \mathtt{\Delta_z=10}[/tex]
[tex]\displaystyle \mathtt{x= \frac{\Delta_x}{\Delta} = \frac{0}{20} =0}\\ \\ \mathtt{y= \frac{\Delta_y}{\Delta}= \frac{10}{20} = \frac{1}{2} }\\ \\ \mathtt{z= \frac{\Delta_z}{\Delta} = \frac{10}{20} = \frac{1}{2} }\\ \\ \mathtt{x=0;~y= \frac{1}{2} ;~z= \frac{1}{2} }[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!