a+b+c = 382
b = a : 2 => a = 2×b
b : c = 3 rest 4
b = 3×c + 4
a |___|___|___|___|___|___|+8
b |___|___|___|+4
c |___|
avem 10 segmente egale + 8 + 4 = 382
382 - (8+4) = 382 - 12 = 370
370 : 10 = 37 (un segment egal)
a = 6 × 37 + 8 = 222 + 8 = 230
b = 3 × 37 + 4 = 111 + 4 = 115
c = 37
Verificare:
230+115+37 = 382
a = 230
b = 115
c = 37
Metoda algebrica:
a+b+c = 382
a =2b
c = (b-4)/3
inlocuim in prima ecuatie in functie de b
2b+b+(b-4)/3 = 382 |×3
6b+3b+b-4 = 1 146
10b = 1 146 + 4
10b =1 150 |:10
b = 115
a = 2×115 = 230
c = (115-4)/3 = 111/3 = 37