Răspuns :
[tex] \frac{5}{|2-x|}\geq 1|()^{-1} \Rightarrow \frac{ |2-x| }{5} \leq 1|\cdot 5 \Rightarrow |2-x| \leq 5 \Rightarrow -5 \leq 2-x\leq 5 \\ \\
\[ \left\{
\begin{array}{II}
2-x \geq -5 & & 2-x\leq 5 \end{array}
\right. \] $ \ \Rightarrow \[ \left\{
\begin{array}{II}
-x \geq -5-2 & & -x\leq 5-2 \end{array}
\right. \] $ \ \Rightarrow \[ \left\{
\begin{array}{II}
-x \geq -7 & & -x\leq 3 \end{array}
\right. \] \end{array}
[/tex]
[tex]\Rightarrow \[ \left\{ \begin{array}{II} x \leq 7 & & x \geq -3 \end{array} \right. \] [/tex]
[tex]\RIghtarrow x\in [-3, 7][/tex]
[tex]\Rightarrow \[ \left\{ \begin{array}{II} x \leq 7 & & x \geq -3 \end{array} \right. \] [/tex]
[tex]\RIghtarrow x\in [-3, 7][/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!