👤

Problema 1c , va rog frumos !

Problema 1c Va Rog Frumos class=

Răspuns :

exercitiul e frumos, dar este mult mai avantajos sa il rezolvi pe tot, in ordinea care este dat
de fapt este un mersde calcul sugerat de catre autorul exerciţiului
cum ar fi determinara m,atricei A^ (-1) , nu clasic , ci din o ecuatie matriceala, cea data la punctul A
Vezi imaginea ALBATRAN
Vezi imaginea ALBATRAN
[tex]\displaystyle \mathtt{1.~c)~A= \left(\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right);~B=\left(\begin{array}{ccc}\mathtt{7}&\mathtt{6}\\\mathtt{-6}&\mathtt{-5}\end{array}\right);~AX=B}\\ \\ \mathtt{AX=B \Rightarrow X=A^{-1}B}[/tex]

[tex]\displaystyle \mathtt{A^{-1}= \frac{1}{det(A)} \cdot A^*}\\ \\ \mathtt{det(A)=\left|\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right|=5 \cdot (-3)-4 \cdot (-4)=-15+16=1}\\ \\ \mathtt{det(A)=1}\\ \\ \mathtt{A=\left(\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right)\Rightarrow A^T=\left(\begin{array}{ccc}\mathtt{5}&\mathtt{-4}\\\mathtt{4}&\mathtt{-3}\end{array}\right)}[/tex]

[tex]\displaystyle \mathtt{D_{11}=(-1)^{1+1}\cdot (-3)=1\cdot (-3)=-3}\\ \\ \mathtt{D_{12}=(-1)^{1+2}\cdot 4=(-1) \cdot 4=-4}\\ \\ \mathtt{D_{21}=(-1)^{2+1}\cdot (-4)=(-1)\cdot (-4)=4}\\ \\ \mathtt{D_{22}=(-1)^{2+2}\cdot 5=1 \cdot 5=5}\\\\\mathtt{A^*=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)}[/tex]

[tex]\displaystyle \mathtt{A^{-1}= \frac{1}{1}\cdot \left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)= \left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)} \\ \\ \mathtt{A^{-1}=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)}[/tex]

[tex]\displaystyle \mathtt{A^{-1}B=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right) \cdot\left(\begin{array}{ccc}\mathtt{7}&\mathtt{6}\\\mathtt{-6}&\mathtt{-5}\end{array}\right)=}[/tex]

[tex]\displaystyle \mathtt{=\left(\begin{array}{ccc}\mathtt{-3\cdot7+(-4) \cdot (-6)}&\mathtt{-3\cdot 6+(-4) \cdot (-5)}\\\mathtt{4 \cdot 7+5 \cdot (-6)}&\mathtt{4 \cdot 6+5 \cdot (-5)}\end{array}\right)=}\\ \\ \mathtt{= \left(\begin{array}{ccc}\mathtt{-21+24}&\mathtt{-18+20}\\\mathtt{28-30}&\mathtt{24-25}\end{array}\right)= \left(\begin{array}{ccc}\mathtt{3}&\mathtt2\\\mathtt{-2}&\mathtt{-1}\end{array}\right)}[/tex] 

[tex]\displaystyle \mathtt{X= \left(\begin{array}{ccc}\mathtt{3}&\mathtt2\\\mathtt{-2}&\mathtt{-1}\end{array}\right)}[/tex]