Răspuns :
exercitiul e frumos, dar este mult mai avantajos sa il rezolvi pe tot, in ordinea care este dat
de fapt este un mersde calcul sugerat de catre autorul exerciţiului
cum ar fi determinara m,atricei A^ (-1) , nu clasic , ci din o ecuatie matriceala, cea data la punctul A
de fapt este un mersde calcul sugerat de catre autorul exerciţiului
cum ar fi determinara m,atricei A^ (-1) , nu clasic , ci din o ecuatie matriceala, cea data la punctul A
[tex]\displaystyle \mathtt{1.~c)~A= \left(\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right);~B=\left(\begin{array}{ccc}\mathtt{7}&\mathtt{6}\\\mathtt{-6}&\mathtt{-5}\end{array}\right);~AX=B}\\ \\ \mathtt{AX=B \Rightarrow X=A^{-1}B}[/tex]
[tex]\displaystyle \mathtt{A^{-1}= \frac{1}{det(A)} \cdot A^*}\\ \\ \mathtt{det(A)=\left|\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right|=5 \cdot (-3)-4 \cdot (-4)=-15+16=1}\\ \\ \mathtt{det(A)=1}\\ \\ \mathtt{A=\left(\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right)\Rightarrow A^T=\left(\begin{array}{ccc}\mathtt{5}&\mathtt{-4}\\\mathtt{4}&\mathtt{-3}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{D_{11}=(-1)^{1+1}\cdot (-3)=1\cdot (-3)=-3}\\ \\ \mathtt{D_{12}=(-1)^{1+2}\cdot 4=(-1) \cdot 4=-4}\\ \\ \mathtt{D_{21}=(-1)^{2+1}\cdot (-4)=(-1)\cdot (-4)=4}\\ \\ \mathtt{D_{22}=(-1)^{2+2}\cdot 5=1 \cdot 5=5}\\\\\mathtt{A^*=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{A^{-1}= \frac{1}{1}\cdot \left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)= \left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)} \\ \\ \mathtt{A^{-1}=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{A^{-1}B=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right) \cdot\left(\begin{array}{ccc}\mathtt{7}&\mathtt{6}\\\mathtt{-6}&\mathtt{-5}\end{array}\right)=}[/tex]
[tex]\displaystyle \mathtt{=\left(\begin{array}{ccc}\mathtt{-3\cdot7+(-4) \cdot (-6)}&\mathtt{-3\cdot 6+(-4) \cdot (-5)}\\\mathtt{4 \cdot 7+5 \cdot (-6)}&\mathtt{4 \cdot 6+5 \cdot (-5)}\end{array}\right)=}\\ \\ \mathtt{= \left(\begin{array}{ccc}\mathtt{-21+24}&\mathtt{-18+20}\\\mathtt{28-30}&\mathtt{24-25}\end{array}\right)= \left(\begin{array}{ccc}\mathtt{3}&\mathtt2\\\mathtt{-2}&\mathtt{-1}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{X= \left(\begin{array}{ccc}\mathtt{3}&\mathtt2\\\mathtt{-2}&\mathtt{-1}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{A^{-1}= \frac{1}{det(A)} \cdot A^*}\\ \\ \mathtt{det(A)=\left|\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right|=5 \cdot (-3)-4 \cdot (-4)=-15+16=1}\\ \\ \mathtt{det(A)=1}\\ \\ \mathtt{A=\left(\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right)\Rightarrow A^T=\left(\begin{array}{ccc}\mathtt{5}&\mathtt{-4}\\\mathtt{4}&\mathtt{-3}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{D_{11}=(-1)^{1+1}\cdot (-3)=1\cdot (-3)=-3}\\ \\ \mathtt{D_{12}=(-1)^{1+2}\cdot 4=(-1) \cdot 4=-4}\\ \\ \mathtt{D_{21}=(-1)^{2+1}\cdot (-4)=(-1)\cdot (-4)=4}\\ \\ \mathtt{D_{22}=(-1)^{2+2}\cdot 5=1 \cdot 5=5}\\\\\mathtt{A^*=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{A^{-1}= \frac{1}{1}\cdot \left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)= \left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)} \\ \\ \mathtt{A^{-1}=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{A^{-1}B=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right) \cdot\left(\begin{array}{ccc}\mathtt{7}&\mathtt{6}\\\mathtt{-6}&\mathtt{-5}\end{array}\right)=}[/tex]
[tex]\displaystyle \mathtt{=\left(\begin{array}{ccc}\mathtt{-3\cdot7+(-4) \cdot (-6)}&\mathtt{-3\cdot 6+(-4) \cdot (-5)}\\\mathtt{4 \cdot 7+5 \cdot (-6)}&\mathtt{4 \cdot 6+5 \cdot (-5)}\end{array}\right)=}\\ \\ \mathtt{= \left(\begin{array}{ccc}\mathtt{-21+24}&\mathtt{-18+20}\\\mathtt{28-30}&\mathtt{24-25}\end{array}\right)= \left(\begin{array}{ccc}\mathtt{3}&\mathtt2\\\mathtt{-2}&\mathtt{-1}\end{array}\right)}[/tex]
[tex]\displaystyle \mathtt{X= \left(\begin{array}{ccc}\mathtt{3}&\mathtt2\\\mathtt{-2}&\mathtt{-1}\end{array}\right)}[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!