[tex]\displaystyle\\
1)\\
\log_216+\log_3\frac{1}{9}=\\\\=\log_22^4+\log_33^{-2}=\\\\
=4\log_22 -2\log_33=4-2=2=\sqrt[3]{2^3}=\boxed{\sqrt[3]{8}\ \textless \ \sqrt[3]{9}}\\\\\\
2)\\
\text{Calculam solutiile ecuatiei atasate functiei,}\\
\text{care sunt abscisele punctelor in care graficul functiei taie axa Ox.}\\\\
x^2+3x-10=0\\\\
x_{12}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-3\pm\sqrt{9+40}}{2}=\frac{-3\pm \sqrt{49}}{2}=\frac{-3\pm 7}{2}\\\\
x_1=\frac{-3+7}{2}=\frac{-3+7}{2}=2\\
x_2\ \textless \ 0
[/tex]
[tex]\Longrightarrow~~~f(2) = 2^2+3\cdot 2-10 = 4 + 6 - 10=10 - 10 = \boxed{0}\\\\
\Longrightarrow~~~f(0)\cdot f(1)\cdot f(2)\cdot f(3)\cdots f(2015)=\\\\
=f(0)\cdot f(1)\cdot 0\cdot f(3)\cdots f(2015)=\boxed{0}[/tex]