👤

Rezolvati ecuatia tg3x+tg5x=2tg4x

Răspuns :

[tex]\\ $Formula$: \tan a+\tan b=\frac{\sin(a+b)}{\cos a\cos b}\\ \tan 3x+\tan 5x=\frac{\sin8x}{\cos 3x\cos 5x}\\ 2\tan 4x=\frac{\sin8x}{\cos^2 4x}\\ $Ecuatia devine$\\ \frac{\sin8x}{\cos 3x\cos 5x}=\frac{\sin8x}{\cos^2 4x}\\ \\ i)\sin8x=0\Rightarrow \text{etc..}\\ ii)\cos 3x\cos 5x}=\cos^2 4x\\ $Formula$: \cos a\cos b=\frac{1}{2}(\cos(a-b)+\cos(a+b))\\ $Ecuatia devine$:\frac{1}{2}(\cos x+\cos8x)=\frac{1}{2}(1+\cos8x)\\ \Rightarrow \cos8x=1\Rightarrow \text{etc...} [/tex]
Sper ca te-am ajutat. Trebuie sa mai rezolvi numai ecuatiile acelea fundamentale. Spor!!