Răspuns :
[tex]\lim_{x \to \infty} \dfrac{1}{1-e^{ \frac{1}{x} }} \cdot \dfrac{1}{x} \\ \\ $Aplicam schimbarea de variabila: $ t = \dfrac{1}{x} \Rightarrow t \rightarrow \dfrac{1}{\infty} \Rightarrow t\rightarrow 0 \\ \\ \Rightarrow \lim_{t \to 0} \dfrac{1}{1-e^{ t }} \cdot t = \lim_{t \to 0} \dfrac{t}{1-e^{ t }} \overset{ (L'H.)\frac{0}{0} }=\lim_{t \to 0} \dfrac{t'}{(1-e^{ t })'} = \\ =\lim_{t \to 0} \dfrac{1}{-e^{ t }} = \dfrac{1}{-e^0} = \dfrac{1}{-1}=-1 [/tex]
[tex]\Rightarrow \boxed{\lim_{x \to \infty} \dfrac{1}{1-e^{ \frac{1}{x} }} \cdot \frac{1}{x} = -1}[/tex]
[tex]\Rightarrow \boxed{\lim_{x \to \infty} \dfrac{1}{1-e^{ \frac{1}{x} }} \cdot \frac{1}{x} = -1}[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!