Răspuns :
[tex] log_\big{5} (3x+1) = 1+log_\big{5} (x-1) \Rightarrow \\ \\ \Rightarrow log_\big{5} (3x+1) =log_\big{5} 5 +log_\big{5} (x-1) \Rightarrow \\ \\ \Rightarrow log_\big{5} (3x+1) =log_\big{5} \Big(5\cdot (x-1)\Big)\Rightarrow \\ \\ \Rightarrow 3x+1 = 5\cdot(x-1) \Rightarrow\\ \\ \Rightarrow 3x+1 = 5x-5 \Rightarrow \\ \\ \Rightarrow 3x-5x= -5-1 \Rightarrow \\ \\ \Rightarrow -2x = -6 \Rightarrow \\ \\ \Rightarrow x= \dfrac{-6}{-2} \Rightarrow \\ \\ \Rightarrow x=3[/tex]
Conditii de existenta: 3x+1 > 0 si x-1 > 0 => 3x > -1 si x > 1 => x> -1/3 si x > 1 => D = (1, +infinit)
x = 3 apartine D => S = {3}
Conditii de existenta: 3x+1 > 0 si x-1 > 0 => 3x > -1 si x > 1 => x> -1/3 si x > 1 => D = (1, +infinit)
x = 3 apartine D => S = {3}
C.E
X>-1/3 si x>1 ⇒x>1
log baza 5 (3x+1) =logbaza 5 din 5+ log baza 5 din (x-1)= log baza 5 din (5x-5)
3x+1=5x-5
6=2x
2x=6
x=3∈Domeniului de existeanta
si care verifiac ecuatia
X>-1/3 si x>1 ⇒x>1
log baza 5 (3x+1) =logbaza 5 din 5+ log baza 5 din (x-1)= log baza 5 din (5x-5)
3x+1=5x-5
6=2x
2x=6
x=3∈Domeniului de existeanta
si care verifiac ecuatia
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!