[tex]\it \dfrac{1}{1\cdot4} +\dfrac{1}{2\cdot6} +\dfrac{1}{3\cdot8} +\ ...\ \dfrac{1}{49\cdot100} =
\\\;\\ \\\;\\
=\dfrac{1}{2} \left(\dfrac{1}{1\cdot2} +\dfrac{1}{2\cdot3} +\dfrac{1}{3\cdot4} +\ ...\ \dfrac{1}{49\cdot50} \right) [/tex]
Fiecare fracție din paranteză se descompune după formula:
[tex]\it \dfrac{1}{k(k+1)} =\dfrac{1}{k}-\dfrac{1}{k+1}[/tex]
Prin urmare, vom avea:
[tex]\it \dfrac{1}{2} \left(\dfrac{1}{1}-\dfrac{1}{2} +\dfrac{1}{2}-\dfrac{1}{3} +\dfrac{1}{3} -\dfrac{1}{4}+\ ...\ \dfrac{1}{49} -\dfrac{1}{50} \right) =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{50}\right)=
\\\;\\ \\\;\\
=\dfrac{1}{2}\cdot\dfrac{49}{50} =\dfrac{49}{100}[/tex]
Se cere radical din acest ultim rezultat:
[tex]\it \sqrt{\dfrac{49}{100}} =\dfrac{\sqrt{49}}{\sqrt{100}} =\dfrac{7}{10}.[/tex]