Răspuns :
[tex]\lg\Big(\dfrac{2}{1}\Big) + \lg\Big(\dfrac{3}{2}\Big) + ...+\lg\Big(\dfrac{10}{9}\Big) = \\ \\ =\Big(\lg2-\lg1\Big)+ \Big(\lg3-\lg2\Big)+ ...+\Big(\lg10-\lg9\Big)= \\ \\ = \lg2+\lg3+...+\lg10 - \lg1-\lg2-\lg3-...-\lg10 = \\ \\ = \lg2+\lg3+...+\lg10 -(\lg1 +\lg2+\lg3+...+\lg10) = \\ \\ = \lg2+\lg3+...+\lg10 -(0 +\lg2+\lg3+...+\lg10) = \\ \\ = \lg2+\lg3+...+\lg10 -(\lg2+\lg3+...+\lg10) = \\ \\ = 0[/tex]
[tex]\\ $M-am folosit de proprietatea: \log_{\big a}b-\log_{\big a}c = \log_{\big a} \Big(\dfrac{b}{c}\Big) \\ \\ $La noi baza era 10:\quad \lg a = \log_{\big{10}}a[/tex]
[tex]\\ $M-am folosit de proprietatea: \log_{\big a}b-\log_{\big a}c = \log_{\big a} \Big(\dfrac{b}{c}\Big) \\ \\ $La noi baza era 10:\quad \lg a = \log_{\big{10}}a[/tex]
Lg2/1+lg3/2+...............+lg10/9=?
[tex]\it lg\dfrac{2}{1}+lg\dfrac{3}{2}+lg\dfrac{4}{3}+ ... lg\dfrac{10}{9}= lg\left(\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\ ...\ \cdot\dfrac{10}{9}\right) =lg10=1[/tex]
[tex]\it lg\dfrac{2}{1}+lg\dfrac{3}{2}+lg\dfrac{4}{3}+ ... lg\dfrac{10}{9}= lg\left(\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\ ...\ \cdot\dfrac{10}{9}\right) =lg10=1[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!