Răspuns :
salut!
[tex]a= \sqrt{114+2(1+2+3+...+113)}
= \sqrt{144+2 \frac{113*114}{2} } [/tex]
=[tex] \sqrt{114+113*114}= \sqrt{114*114} =114[/tex]
[tex]a= \sqrt{114+2(1+2+3+...+113)}
= \sqrt{144+2 \frac{113*114}{2} } [/tex]
=[tex] \sqrt{114+113*114}= \sqrt{114*114} =114[/tex]
[tex]a = \sqrt{114+(2+4+6+...+226)} \\ \\ a = \sqrt{114+2\cdot(1+2+3+...+113)} \\ \\ a = \sqrt{114+2\cdot \dfrac{113\cdot(113+1)}{2}} \\ \\ a = \sqrt{114+113\cdot (113+1)} \\ \\ a = \sqrt{114+113\cdot 114} \\ \\ a = \sqrt{114\cdot(1+113)}\\ \\ a = \sqrt{114\cdot 114} \\ \\ a = \sqrt{114^2} \\ \\ a= 114[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!