👤

Daca a∈R este astfel incat sin 2a=frac{1}{2} ,aratati ca sin^{4} a + cos^{4} a=frac{7}{8}

Răspuns :

[tex]\displaystyle \sin^4 \alpha +\cos^4\alpha=(\sin^2\alpha)^2+(\cos^2\alpha)^2+2\times\sin^2\alpha\times\cos^2\alpha-\\ \\ -2\times\sin^2\alpha\times\cos^2\alpha=(\sin^2\alpha+\cos^2\alpha)^2-2\times\sin^2\alpha\times\cos^2\alpha=\\ \\ 1-2\times(\sin\alpha\times\cos\alpha)^2\\ \\ \\ \sin(2\alpha)=\frac 12\Leftrightarrow 2\times\sin\alpha\times\cos\alpha=\frac 12\Leftrightarrow \sin\alpha\times\cos\alpha=\frac 14\\ \\ \\ 1-2\times(\frac 14)^2=1-2\times \frac 1{16}=1-\frac 18=\frac 78\\ \\ \\ \\ c.t.d.[/tex]


[tex]\it sin2a=\dfrac{1}{2} \Leftrightarrow sin^22a= \dfrac{1}{4} \Leftrightarrow (2\sin a\cos a)^2 = \dfrac{1}{4}\ \ \ \ (*) \\\;\\ \\\;\\ sin^4a+cos^4a = (sin^2a+cos^2a)^2 -2sin^2 a\ cos^2a = \\\;\\ \\\;\\ =1-\dfrac{4sin^2acos^2a}{2} = 1-\dfrac{(2\ sin a \cos a)^2}{2} \stackrel{(*)}{=} 1-\dfrac{\dfrac{1}{4}}{2} =1-\dfrac{1}{8} =\dfrac{7}{8} [/tex]