Răspuns :
x²+x+1>0 ∀x pt caΔ=-3
deci ramane ca
x^2+ax+2≥0,∀x
ceea ce se intampla cand Δ≤0
deci a²-8≤0
a∈[-2√2;2√2]
deci ramane ca
x^2+ax+2≥0,∀x
ceea ce se intampla cand Δ≤0
deci a²-8≤0
a∈[-2√2;2√2]
observi ca determinantul numitorului este 1-4=-3<0 Deci numitorul este strict pozitiv
Pui consditia ca si numaratorul sa fie pozitiv
x²+ax+2>0
Pui conditia ca determinantul numaratorului sa fie negativ
a²-4*2≤0
a²≤8 =>
a²=8 a1 =+/-√8=+/-2√2
a∈[-2√2,2√2]
∈
Pui consditia ca si numaratorul sa fie pozitiv
x²+ax+2>0
Pui conditia ca determinantul numaratorului sa fie negativ
a²-4*2≤0
a²≤8 =>
a²=8 a1 =+/-√8=+/-2√2
a∈[-2√2,2√2]
∈
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!