Răspuns :
a) n-1|n+1
n-1| n-1
n+1+n-1=2 deci n-1 | 2 ⇒n-1 ∈ D2
n-1∈{-2,-1,1,2} n∈{-1,0,2,3} n∈N⇒S:n∈{0,2,3}
b)n-1 | 3n+1⇒n-1| 3n+1
n-1 | n-1 ⇒n-1| 3n-3
3n+1-3n+3=4 deci n-1| 4 ⇒n-1 ∈ D4 n-1∈ {-4,-2,-1,1,2,4}
n∈{-3,-1,0,2,3,5}
n∈N⇒S:n∈{0,2,3,5}
c)2n-1|3n-1 ⇒2n-1 |6n-2
2n-1|2n-1 ⇒2n-1 |6n-3
6n-2-6n+3=1 deci 2n-1 | 1⇒2n-1 ∈D1 2n-1∈ {-1,1} 2n∈{0,2}
n∈{0,1} n∈N⇒S:n∈{0,1}
2.S=3 + 3² + 3³ + ... + 3¹²
avem 12 termeni putem sa ii grupa cate 3
S=(3 + 3² + 3³) + ...(3¹⁰+3¹¹ + 3¹²)=
=3(1 + 3 + 3²) + ...3¹⁰(1+3 + 3²)=
=3(1 + 3 + 9) + ...3¹⁰(1+3 + 9)=
=13(3+...+3¹⁰) deci divizibil cu 13
avem 12 termeni putem sa ii grupa cate 4
S=3 + 3² + 3³ + ... + 3¹²=(3 + 3² + 3³ +3⁴+ ...3⁹+3¹⁰+3¹¹ + 3¹²)=
=3(1+3+3²+3³)+...+3⁹(1+3+3²+3³)=
=3(1+3+9+27)+...+3⁹(1+3+9+27)=
=3×40+...+3⁹×40=
=5(3×8+...+3⁹×8 deci divizibil cu 5
n-1| n-1
n+1+n-1=2 deci n-1 | 2 ⇒n-1 ∈ D2
n-1∈{-2,-1,1,2} n∈{-1,0,2,3} n∈N⇒S:n∈{0,2,3}
b)n-1 | 3n+1⇒n-1| 3n+1
n-1 | n-1 ⇒n-1| 3n-3
3n+1-3n+3=4 deci n-1| 4 ⇒n-1 ∈ D4 n-1∈ {-4,-2,-1,1,2,4}
n∈{-3,-1,0,2,3,5}
n∈N⇒S:n∈{0,2,3,5}
c)2n-1|3n-1 ⇒2n-1 |6n-2
2n-1|2n-1 ⇒2n-1 |6n-3
6n-2-6n+3=1 deci 2n-1 | 1⇒2n-1 ∈D1 2n-1∈ {-1,1} 2n∈{0,2}
n∈{0,1} n∈N⇒S:n∈{0,1}
2.S=3 + 3² + 3³ + ... + 3¹²
avem 12 termeni putem sa ii grupa cate 3
S=(3 + 3² + 3³) + ...(3¹⁰+3¹¹ + 3¹²)=
=3(1 + 3 + 3²) + ...3¹⁰(1+3 + 3²)=
=3(1 + 3 + 9) + ...3¹⁰(1+3 + 9)=
=13(3+...+3¹⁰) deci divizibil cu 13
avem 12 termeni putem sa ii grupa cate 4
S=3 + 3² + 3³ + ... + 3¹²=(3 + 3² + 3³ +3⁴+ ...3⁹+3¹⁰+3¹¹ + 3¹²)=
=3(1+3+3²+3³)+...+3⁹(1+3+3²+3³)=
=3(1+3+9+27)+...+3⁹(1+3+9+27)=
=3×40+...+3⁹×40=
=5(3×8+...+3⁹×8 deci divizibil cu 5
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!