Răspuns :
Suma lui Gauss: 1+2+3+...+n=[n(n+1)]/2
Lipsește 1+2+3+...+22 din sumă.
S=23+24+25+...+85-(1+2+3+...+22)
S=(85*86)/2-(22*23)/2
S=85*43-11*23
S=3655-253
S=3402
Lipsește 1+2+3+...+22 din sumă.
S=23+24+25+...+85-(1+2+3+...+22)
S=(85*86)/2-(22*23)/2
S=85*43-11*23
S=3655-253
S=3402
1+2+3+...+22=22•23/2=253
1+2+3+...+23+24+25+...+85=85•86/2=85•43
=3655
3655-253=3402
1+2+3+...+23+24+25+...+85=85•86/2=85•43
=3655
3655-253=3402
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!