👤

Daca a,b,c sunt numere reale pozitive, sa se demonstreze ca:

D) a^2+b^2+c^2 >= ab+ac+bc


Răspuns :

a²+b²+c²≥ab+ac+bc  /*2
2a²+2b²+2c²≥2ab+2ac+2bc /-(2ab+2ac+2bc)
a²+a²+b²+b²+c²+c²-2ab-2ac-2bc≥0
|_____|__________|
      |________|_________|
                 |_____|_________|
(a-b)²+(a-c)²+(b-c)²≥0-adevarat,pt ∨ a,b,c ∈ R