👤

Determinați x aparține mulțimii N*, astfel încat : a) (x+3) | 2x+10 x=? b) (x+2) | (3x+1) x=? c) (x+3) | (3x+25) x=?

Răspuns :

   
[tex]\displaystyle\\ a)~(x+3) | (2x+10)~\text{echivalent cu: }~(2x+10)~ \vdots~(x+3)\\\\ \frac{2x+10}{x+3}= \frac{2x+6+4}{x+3}=\frac{2x+6}{x+3}+\frac{4}{x+3}=\\\\ =\frac{2(x+3)}{x+3}+\frac{4}{x+3}=2+\frac{4}{x+3}\\\\ 4~\vdots~(x+3) ~\Longrightarrow~(x+3) \in D_{4}\\\\ D_4 = \{1;~2;~4\}\\\\ x+3 = 1 ~\Longrightarrow~x =1-3=-2 \notin N^\star\\\\ x+3 = 2 ~\Longrightarrow~x =2-3=-1 \notin N^\star\\\\ x+3 = 4 ~\Longrightarrow~x =4-3=1 \in N^\star\\\\ \boxed{x=1} [/tex]


[tex]\displaystyle\\ b)~(x+2) | (3x+1)~\text{echivalent cu: }~(3x+1)~ \vdots~(x+2)\\\\ \frac{3x+1}{x+2}= \frac{3x+6-5}{x+2}=\frac{3x+6}{x+2}-\frac{5}{x+2}=\\\\ =\frac{3(x+2)}{x+2}-\frac{5}{x+2}=3-\frac{5}{x+2}\\\\ 5~\vdots~(x+2) ~\Longrightarrow~(x+2) \in D_{5}\\\\ D_5 = \{1;~5\}\\\\ x+2 = 1 ~\Longrightarrow~x =1-2=-1 \notin N^\star\\\\ x+2 = 5 ~\Longrightarrow~x =5-2=3 \in N^\star\\\\ \boxed{x=3} [/tex]


[tex]\displaystyle\\a)~(x+3)|(3x+25)~\text{echivalent cu:}~(3x+25)~\vdots~(x+3)\\\\ \frac{3x+25}{x+3}=\frac{3x+9+16}{x+3}=\frac{3x+9}{x+3}+\frac{16}{x+3}=\\\\ =\frac{3(x+3)}{x+3}+\frac{16}{x+3}=3+\frac{16}{x+3}\\\\ 16~\vdots~(x+3) ~\Longrightarrow~(x+3)\in D_{16}\\\\ D_{16}=\{1;~2;~4;~8;~16\}[/tex]

[tex]x+3=1~\Longrightarrow~x=1-3=-2\notin N^\star\\\\ x+3=2~\Longrightarrow~x=2-3=-1\notin N^\star\\\\ x+3=4~\Longrightarrow~x=4-3=1\in N^\star\\\\ x+3=8~\Longrightarrow~x=8-3=5\in N^\star\\\\ x+3=16~\Longrightarrow~x=16-3=13\in N^\star\\\\ \boxed{x\in \{1;~5;~13\} }\\\\ [/tex]