pt n par, adica n=2k, u(2kx5)=0; u(5x2k+5)=5
u(5×n×n+5×n)=u[n(5n+5)]=u[2k(5x2k+5)]=u(2kx5)=0
pt n impar, adica n=2k+1
u(5×n×n+5×n)=u[n(5n+5)]=u{[(2k+1)[5x(2k+1)+5)]}=
u[(2k+1)[10k+5)+5)]=u[(2k+1)(10k+10)]=u[10(2k+1)(k+1)]=0
deci pentru orice n, ultima cifra e 0