👤

derivata functiei u(t)=t^t este =t*t^(t-1)? Multumesc anticipat!

Răspuns :

   
[tex]\displaystyle\bf\\ f(x)=x^x,~~~x\ \textgreater \ 0\\\\ f'(x)=(x^x)'=x^x(1+\ln x)\\ \texttt{(Asta e o formula din tabelul de derivate)}\\\\ \texttt{In forma scrisa in enunt, derivata este:}\\\\ u(t)=t^t,~~~t\ \textgreater \ 0\\ u'(t)=(t^t)'=t^t(1+\ln t) [/tex]


[tex]\displaystyle \bf \\ \text{O formula mai generala din care o putem deduce pe asta, este:}\\\\ f(x)=u^v,~~u\ \textgreater \ 0,\texttt{unde u si v sunt functii:}\\\\ f'(x)=(u^v)'=u^v\left[\frac{u'}{u}\cdot v+v'\ln u\right]\\\\ \texttt{Daca facem inlocuirile: }u(x)=x~~\texttt{ si }~~v(x)=x\\ \texttt{obtinem formula de mai sus.}[/tex]