👤

Aratati ca x²-x+n ≥ 0,oricare ar fi x ∈ Rsi oricare ar fi n≥ 1 supra 4

Răspuns :


[tex]\it n\geq\dfrac{1}{4} \Rightarrow n-\dfrac{1}{4} \geq0 \ \ \ \ (1) \\\;\\ \\\;\\ \left(x-\dfrac{1}{2}\right)^2 \geq0 \ \ \ \ \ (2)[/tex]

[tex]\it (1), (2) \Rightarrow \left(x-\dfrac{1}{2}\right)^2 +n-\dfrac{1}{4} \geq0 \Rightarrow x^2-2x\cdot\dfrac{1}{2} +\dfrac{1}{4} +n-\dfrac{1}{4} \geq0 \\\;\\ \\\;\\ \Rightarrow x^2-x+n\geq0, \ \forall\ x\in \mathbb{R},\ \forall n \geq\dfrac{1}{4}[/tex]