👤

Arata ca 3^2n+1×5^n+9^n×5^n+1+3^n+2×15^n se divide la 17 pentru orice numar natural n


Răspuns :

3^2n+1×5^n+9^n×5^n+1+3^n+2×15^n=
=3^2n+1×5^n+3^2n×5^n+1+3^n+2×3^n×5^n=
=3^2n+1×5^n+3^2n×5^n+1+3^2n+2×5^n=
=3^2n×5^n×(3+1×5+3^2)=
=3^2n×5^n×(3+5+9)=
=3^2n×5^n×17  deci se divide la 17