👤

Arătați că numărul F =1+7 la 1 + 7 la 2 +7 la 3 +...........+7 la 1995 se divide cu 7
Arătați că numărul G=13+13 la 2 +13 la 3 +.............+13 la 2012 se divide cu 7
Arătați că numărul H =1+5 la 1 +5 la 2 +..........+5 la 2011 se divide cu 31


Răspuns :

F =1+7 la 1 + 7 la 2 +7 la 3 +...........+7 la 1995 se divide cu 7
F = 1995 +
7 la 2 +7 la 3 +...........+7 la 1995;
F = 7 (285 + 1 +
7 la 1 + 7 la 2 +7 la 3 ......+ 7 la 1994 ) , este divizibil cu 7;

G=13+13 la 2 +13 la 3 +.............+13 la 2012 se divide cu 7;
G = (13 +
13 la 2 ) + 13 la 2 (13 + 13 la 2 ) + 13 la 4 (13 + 13 la 2 ) +
+ 13 la 6
(13 + 13 la 2 ) + ............ + 13 la 2010 (13 + 13 la 2 );
G= 182 +
13 la 2 . 182 + 13 la 4. 182 ............ 13 la 2010. 182.
Dând factor comun pe 182, observăm că acesta este divizibil cu 7.


H =1+5 la 1 +5 la 2 +..........+5 la 2011 se divide cu 31
H = (
1+5 la 1 +5 la 2) + 5 la 3 (1+5 la 1 +5 la 2) + 5 la 6 (1+5 la 1 +5 la 2) +  ............ + 5 la 2009 (1+5 la 1 +5 la 2);
H = 31 + 5 la 3.  31
+ 5 la 6 . 31 + 5 la 9 .31 + 5 la 2009 .31;
Dând factor comun pe 31 observăm că suma H se divide la 31.