👤

1)Arătați ca :2^1×2^2×2^3×.....×2^100+(16^2)^631=5×4^2524
2)Sa se scrie numărul 101^n,n €Nu ca o suma de 101 numere naturale consecutive


Răspuns :

[tex]2^{1}*2^{2}*2^{3}*...*2^{100}+(16^{2})^{631}=[/tex]

[tex]=2^{1+2+3+...+100}+(2^{4})^{2*631}=[/tex]

[tex]=2^{100*101:2}+(2^{4})^{1262}=[/tex]

[tex]=2^{5050}+2^{5048}=[/tex]

[tex]=2^{5048}(2^{2}+1)=[/tex]

[tex]=(2^{2})^{2524}*5=[/tex]

[tex]=5*4^{2524}[/tex]




[tex]101^{n}=[/tex]

[tex]=101^{n-1}*101=[/tex]

[tex]=101^{n-1}(1+1+1+....+1)=[/tex]
(in paranteza 1 se repeta de 101 ori)

[tex]=101^{n-1}+101^{n-1}+...+101^{n-1}[/tex]
([tex]101^{n-1}[/tex] se repeta de 101 ori)