3×(2^5+2^4-2^3)+[25^10-(5^5)^4]:(3^100-2^100) =
= 3×(32+16)+(5^20-5^20):(3^100-2^100) =
= 3 × 48 + 0 : (3^100 - 2^100) =
= 144 + 0 =
= 144
1+[19-9×(5^3)^7:(5^7)^3]^10:1000^3 =
= 1+(19-9×5^21:5^21)^10 : (10^3)^3 =
= 1 + (19 - 9 × 1)^10 : 10^9 =
= 1 + 10^10 : 10^9 =
= 1 + 10=
= 11
3^105:(5^221:5^220-2)^45:27^20 =
= 3^105:(5-2)^45 : (3^3)^20 =
= 3^105 : 3^45 : 3^60 =
= 3^(105-45-60) =
= 3^0 =
= 1
3^2+[2^3:2-2^17:(2^2)^8]:
[(2^5)^6+25^4-13^2]:[8^10+625^2-169] =
= 9+(8:2-2^17:2^16):(2^30+5^8-169):(2^30+5^8 - 169) =
= 9+(4 - 2):(1 + 1 - 1) =
= 9 + 2 : 1 =
= 11