👤

Aduceţi la forma cea mai simplă expresia:

[tex]E1(x)=[(\frac{1}{x}-\frac{2}{x^{2}}*\frac{x}{x-2}-\frac{x}{x+2}]*\frac{x^{2}+5x+6}{x^{2}+4x+3}[/tex]


Răspuns :

Rezolvarea este în atașament.
Vezi imaginea ALEXANDRAVERT

[tex](( \frac{1}{x} - \frac{2}{ {x}^{2} }) \times \frac{x}{x - 2} - \frac{x}{x + 2} )) \times \frac{ {x }^{2 } + 5x + 6 }{ {x}^{2} + 4x + 3 } [/tex]
[tex]( \frac{x - 2}{ {x}^{2} } \times \frac{x}{x - 2} - \frac{x}{x + 2} ) \times \frac{ {x}^{2} + 3x + 2x + 6 }{ {x}^{2} + 3x + x + 3 } [/tex]
[tex]( \frac{ 1}{x} - \frac{x}{x + 2} ) \times \frac{x(x + 3) + 2(x + 3)}{x(x + 3) + x + 3} [/tex]
[tex] \frac{x + 2 - {x}^{2} }{x(x + 2)} \times \frac{(x + 2)(x + 3)}{(x + 1)(x + 3)} [/tex]
[tex] \frac{ - {x}^{2} + x + 2 }{x} \times \frac{1}{x + 1} [/tex]
[tex] \frac{ - {x}^{2} + 2x - x + 2 }{x} \times \frac{1}{x + 1} [/tex]
[tex] \frac{ - \times (x - 2) - (x - 2)}{x } \times \frac{1}{x + 1} [/tex]
[tex] \frac{( - x - 1)(x - 2)}{x} \times \frac{1}{x + 1}[/tex]
[tex] \frac{ - (x + 1)(x - 2)}{x} \times \frac{1}{x + 1} [/tex]
[tex] \frac{ - (x - 2)}{x} [/tex]
[tex] - \frac{x - 2}{x} [/tex]
[tex] \frac{2 - x}{x} [/tex]
A durat ceva pana am scris de pe telefon dar te asigur ca e bine