25•n²+12
caz I:n-par => n²-par
=> U(25•n²)=0
=> U(25•n²+12)=2
pp-patrat perfect
pp ∈{0,1,4,9,6,5}
2∉{0,1,4,9,6,5} => 25•n²+12 nu poate fi patratul unui numar
caz II:n-impar => n²-impar
=> U(25•n²)=5
=> U(25•n²+12)=7
7∉{0,1,4,9,6,5} => 25•n²+12 nu poate fi patratul unui numar
din I si II rezulta ca ∨ n ∈ N nu poate fi pp