voi folosi notatia v =radical
5v3 +3x{4v2+4[3v3+2(v3-3v2)]} : 20 =
5v3+3x{4v2+4[3v3 +2v3-6v2]} :20 =
5v3+3x[4v2+20v3-24v2] :20 =5v3 +[3(20v3-20v2) ] : 20 =
5v3 +3v3 -3v2 = 8v3-3v2
11v7 -2x{5v2+[13v7+3(8v2-3v7)] :4 } =
11v7-2x{5v2+(13v7 +24v2-9v7) :4 } =
11v7 -2x{5v2+(4v7 +24v2) :4 } =
11v7 -2(5v2 +v7+6v2) =
11v7-2(11v2 +v7) =11v7 -22v2-2v7 =10v7 -22v2
3v5-7{v2+[15v5-3(v5-4v2)] :12} =
3v5-7{v2+[15v5-3v5+12v2] :12 }=
3v5 -7{v2+[12v5 +12v2] :12 } =
3v5 -7(v2+v5+v2) = 3v5 -7(2v2+v5) =3v5 -14v2-7v5 =-4v5 -14v2