👤

Aflati numarul natural x care verifica egalitatea 15/x²+4x=5/4
Cineva care stie?????


Răspuns :

   
[tex]\displaystyle\\ \frac{15}{x^2+4x}= \frac{^{3/}5}{4} \\\\ \frac{15}{x^2+4x}= \frac{15}{12} \\\\ \Longrightarrow~~x^2+4x = 12\\\\ x^2+4x - 12=0\\\\ x_{12}= \frac{-b\pm \sqrt{b^2-4ac} }{2a}= \frac{-4\pm \sqrt{16+48} }{2}= \frac{-4\pm \sqrt{64} }{2}= {\bf \frac{-4\pm 8 }{2}}\\\\ x_1 = \frac{-4+ 8 }{2} = \frac{4 }{2} = \boxed{\bf 2}\\\\ x_2 = \frac{-4- 8 }{2} = \frac{-12 }{2} = \boxed{\bf -6}\\\\ [/tex]