👤

Determinati a e R \ {-1}, pentru care graficul functiei f:R->R, f(x) = (1+2)x^2 + 3(a-1)x + a-1 intersecteaza axa Ox in doua puncte distincte.

Răspuns :

Functia intersecteaza axa Ox in doua puncte doar daca Δ>0.
[tex]\Delta=9(a-1)^2-4(a+1)(a-1)\\ \Delta=9a^2-18a+9-4a^2+4\\ \Delta=5a^2-18a+13\ \textgreater \ 0\\ \Delta_{a}=324-4\cdot 5\cdot 13=64\Rightarrow \sqrt{\Delta_{a}}=8\\ a_1=\frac{18+8}{10}=\frac{13}{5}\\ a_2=\frac{18-8}{10}=1\\ \text{Facand tabel de semn,se obtine:}\ a\in (-\infty,1)\cup (\frac{13}{5},\infty)[/tex]