AC∩BD={O}
BE⊥(ABC)
BO⊥AC (diagonalede romb), AC⊂(ABC)
⇒(T3p)EO⊥AC⇔d(A,AC)=EO
EO=√(BE²+BO²)=√(9²+12²)=15
am folosit BO=BD:2=24:2=12
Fie BM⊥CD. M∈CD
BM*DC=DB*OC (intr-un triunghi produsul intre baza si inaltimea corespunzatoare este constant)
OC=A:2=16
DC=√(12²+16²)=20
BM*DC=DB*OC
BM*20=24*16
BM*5=6*16=96
BM=96/5
EB⊥(ABC)
DC⊂(ABC)
BM⊥DC ⇒(T3p)EM⊥DC⇔d(E, DC)=EM
ΔEBM dreptunghic in B
EM=√(EB²+BM²)= √(9²+(96/5)²)=(3/5)*√1249