Răspuns :
sin²(x+y) - sin²(x-y) = [sin(x+y) - sin(x-y)][sin(x+y) + sin(x-y)] =
=(sinxcosy+sinycosx -sinxcosy+sinycosx)(sinxcosy+sinycosx +
+sinxcosy-sinycosx) = 2sinycosx·2sinxcosy =(2sinxcosx)(2sinycosy) =
= sin2x ·sin2y
Din a ^2-b^2=(a-b)(a+b)
Sin^2(x+y)-sin^2(x-y)=[sin(x+y)+sin(x-y)][sin(x+y)-sin(x-y)]=(sinx*cosy+cosx*siny+sinx*cosy-cosx*siny)(sinx*cosy+cosx*siny-sinx*cosy+cosx*siny)=2(sinx*cosy)*2(cosx*siny)=4sinx*cosx*siny*cosy=sin2x*sin2y
Sin^2(x+y)-sin^2(x-y)=[sin(x+y)+sin(x-y)][sin(x+y)-sin(x-y)]=(sinx*cosy+cosx*siny+sinx*cosy-cosx*siny)(sinx*cosy+cosx*siny-sinx*cosy+cosx*siny)=2(sinx*cosy)*2(cosx*siny)=4sinx*cosx*siny*cosy=sin2x*sin2y
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile disponibile v-au fost utile și inspiraționale. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, suntem aici pentru a vă ajuta. Ne face plăcere să vă revedem și vă invităm să adăugați site-ul nostru la favorite pentru acces rapid!