👤

comparati numetele a) 108 la puterea 72 si 100 la puterea 108

Răspuns :

   
[tex]\displaystyle\\ 108^{72}\overset{?}{\ \textgreater \ =\ \textless \ }100^{108}\\\\ \text{Descompunem bazele:}\\\\ 108=2^2\times3^3=\Big(3\sqrt[3]{4}\Big)^3 \\\\ 100=2^2\times5^2=10^2\\\\ 108^{72}=\left(\Big(3\sqrt[3]{4}\Big)^3\right)^{72}=\Big(3\sqrt[3]{4}\Big)^{3\times72}=\boxed{\Big(3\sqrt[3]{4}\Big)^{216}}\\\\ 100^{108}=\Big(10^2\Big)^{108}=10^{2\times 108}=\boxed{10^{216}}\\\\ \text{Comparam numerele:} \\ 3\sqrt[3]{4}~si~10 ~\Big|~~\text{(Ridicam la puterea a 3-a)}\\\\ \boxed{27\times4=108 \ \textless \ 1000 }[/tex]

[tex]\displaystyle\\ \Longrightarrow~~ \Big(3\sqrt[3]{4}\Big)^{216} \ \textless \ 10^{216}\\\\ \Longrightarrow~~ \boxed{108^{72} \ \textless \ 100^{108}}[/tex]